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A typical subsurface environment is heteroge-
neous, consists of multiple materials, and is often
insufficiently characterized by data. The ability
to delineate geologic facies and to estimate their
properties from sparse data is essential for mod-
eling physical and biochemical processes occur-
ring in the subsurface. Geostatistics has become
an invaluable tool for estimating such properties
at points in a computational domain where data
are not available, as well as for quantifying the
corresponding uncertainty.

Boundary between two materials in a synthetic
porous medium.

One of the most popular geostatistical ap-
proaches to facies delineation employs discon-
tinuous geostatistical models, such as Indicator
Kriging [1]. In this approach, each measurement
of various parameters (hydraulic conductivity and
dispersivity, for example) is assigned a discrete
value of an indicator function. The indicator func-
tion is treated as a random field, and Kriging is

used to estimate the values of the indicator func-
tion at points where measurements are not avail-
able. The boundary between materials is then de-
fined as an isoline of the ensemble mean of the in-
dicator function. The value of this isoline is deter-
mined in a way that preserves the relative volumes
of each material. While successful in many appli-
cations, geostatistical methods require a number
of fundamental assumptions, such as an assump-
tion of ergodicity, whose validity is often hard to
verify.

An example of a simple linear classifier applied
to a problem with two classes, denoted by+ and
� signs. The decision boundary is represented
by the solid line, and the dotted lines indicate the
margin.

We have recently examined an alternative ap-
proach to the problem of facies delineation that
uses a pattern classification technique known as
the Support Vector Machine (SVM) [2, 3]. In-
stead of constructing an explicit probabilistic
model for the underlying physical measurements
or the corresponding indicator function, we treat
the problem as a problem of pattern classifica-
tion in the spatial domain of measurements po-
sitions. Within this framework, the boundary be-
tween materials is represented by the resultingde-
cision functionseparating the two classes of ma-
terials. The SVM approach to this problem, mo-
tivated by Statistical Learning Theory [4], is to
maximize themargin, indicated in the second fig-
ure by the region between the dotted lines. (While
the boundary in this figure is linear, non-linear
boundaries are also possible by employingkernel
methods [3].)
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To demonstrate the applicability of SVMs to
subsurface imaging, and to elucidate its relative
advantages with respect to a geostatistical ap-
proach, we reconstruct, from a few data points
selected at random, the boundary between the
two heterogeneous geologic facies in the syn-
thetic porous medium shown in the first figure.
The sample points and estimated boundary are
displayed in the third figure.

Boundary estimated by an SVM using the 180 in-
dicated sample points.
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Error rates for the GSA and SVM approaches.

The final figure shows a comparison of the per-
formance of the GSA and the SVM (with the ex-
ponential radial basis kernel with radiusσ = 1.0)
using 20 trials for each of sampling densities.
When enough measurements are available (i.e.,

when the sampling density is large enough), both
methods perform equally well, with the SVM be-
ing slightly more accurate than the GSA. Two fac-
tors, however, argue strongly in favor of SVMs.
First, they perform relatively well even on highly
sparse data sets, on which GSA fails. Second,
SVMs are highly automated, while GSAs require
manual data analysis to construct spatial vari-
ograms. As a result, the GSAs are highly time
consuming and depend on the subjective judg-
ment of the practitioner.

An article on our initial experiments with linear
SVMs has been published [5], and another article
describing the extension to kernel SVMs is cur-
rently under review [6].
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